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ABSTRACT 

A deficiency is pointed out in Stevenson's method of reducing the solution of 

electromagnetic scattering problems to a succession of standard potential problems 

whose solutions determine terms in the low frequency expansion of the scattered 

field.  An alternate approach is presented, for perfectly conducting scatterers, 

which not only removes the difficulty but also is simpler and more explicit than 

Stevenson's method.   The details of the analogous, though simpler, scalar scatter- 

ing problems are also presented. 

IV 
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I 
INTRODUCTION 

The purpose of this report is to describe a method of reducing scattering 

problems to a series of potential problems.   We deal with a general class of three 

dimensional scatterers, smooth, closed, bounded, in short those surfaces for which 

Green's theorem in any of its guises may be invoked.   The solution of a scattering 

problem, for arbitrary excitation, is expressed as a series in ascending powers of 

wave number,  k.   This series is known by a variety of names, including Rayleigh 

series, quasi-static series, and low frequency expansion.   That the first term in 

such a series could be found as the solution of a potential problem was observed by 

Rayleigh (1897) who determined this term explicitly for a variety of scatterers of 

both acoustic and electromagnetic waves.   For scalar scattering, the determination 

of succeeding terms in this series as solutions of potential problems has been de- 

scribed, in varying detail, by Noble (1962), Morse and Feshbach (1953), and Dar- 

ling and Senior (1965). (See Kleinman (1965a) for a more complete bibliography.) 

The derivation of successive terms in this series for electromagnetic scat- 

tering was described by Stevenson (1953a).   Actually Stevenson described two meth- 

ods, one for finding the general term in the series and a second special technique 

for finding the first three terms.   All of his specific calculations (Stevenson, 1953b) 

were carried out using this special technique.   No attempt to utilize the general 

method for obtaining higher order terms has, to this writer's knowledge, been re- 

ported, which indicates that if attempts were made, they were unsuccessful.   More 

likely, there were none.   This is due to the fact that the analysis is sufficiently in- 

volved to discourafea most efforts to derive more than three terms in a low fre- 

quency expansion (that Stevenson treats the more general case of penetrable scat- 

terers certainly doesn't help).   For these, Stevenson's special simpler technique 

suffices.   An attempt to clarify the Stevenson method was made by Seuior and 

Sleator (1964) and the present report may be considered an outgrowth of their work. 
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The present work demonstrates that the method proposed by Stevenson for 

finding the general term in the series needs clarification at best and at worst leads 

to incorrect results. An alternate method, preseiving the spirit of Stevenson's 

approach and indeed largely based on it, is presented which hopefully embodies both 

clarity and correctness. Conciseness has been sacrificed in an attempt to minimize 

the chances of further obscuring the subject. 

The procedure in the electromagnetic (vector) case is a natural extension of 

the technique employed in the scalar case.   For this reason, and also to introduce 

some notation as well as concepts in the simplest setting, the next section is de- 

voted to a discussion of how scalar scattering problems may be reduced to the study 

of a succession of potential problems.   In Section 3 we describe Stevenson's method 

for treating the analogous vector problem and show why it is unsatisfactory.   Sec- 

tion 4 presents an alternative to Stevenson's method which eliminates its short- 

comings.   Section 5 is devoted to an illustrative example. 
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11 
SCALAR SCATTERING 

In this section we show how a scalar scattering problem with Dirichlet or 

Neumann boundary conditions may be reduced to a succession of "standard" poten- 

tial problems.   These terms will be precisely defined as they are introduoed. 

Let B denote the boundary of a smooth, closed, bounded surface in Euclid- 

ian 3-space (or the union of a finite number of such surfaces provided they are dis- 

joint), let n denote the outward drawn unit normal at any point of B and let V be 

the volume exterior to B.   Erect a cartesian coordinate system with origin in B and 

let r denote a radius vector to a general point (x, y, z) and r_ denote a point on B. 
B 

Furthermore denote by R the distance between r and r_,  i.e., 
B 

R = \r-y =  ^jix-^Hy-y/Hz-z/ . (2.1) 

The geometry is illustrated in Fig. 1. 

Figure 1 

3 
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By a scalar scattering problem for the surface B is meant the determination 
In/* 

of how the presence of the surface perturbs an incident field, 0    , that is, finding 

a function $(r) suchthat 

(V2+k2;^ = 0 fcV. 

lim 
•oo {£§-*§) = o , 

(2.2) 

(2.3) 

and either 

to,) =-rx.). B 

or 

a»?) 
dn 

r=r 

B 

an 

(2.4a) 

B 

(2.4b) 
r=r 

B 

Equation (2.3) is a statement of Sommerfeld's radiation condition which im- 

plies that outgoing waves look like 
»ikr 

f(ö, 0) for large r.   The boundary condi- 

tions (2.4a) and (2.4b) are Dirichlet and Neumann conditions respectively.   Specify- 

ing either one is sufficient to guarantee the existence of a unique function $ hence 

both the values of the function and its normal derivative may not be assigned arbi- 

trarily.   We will consider the Dirichlet and Neumann problems separately but the 

analysis is quite similar. 

The starting point is the Helmholtz integral representation of regular solu- 

tions of (2.2); viz. 

§(?) = £ J j* a      e  
an      R R     an dB (2.5) 

The integration is carried out over the surface and the normal derivative is 

n • V.   Next we assume that the unknown function ^ may be expressed as a conver- 
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gent power series in k.  Actually this need not be assumed, that is, it may be 

proven that there does exist such an expansion, convergent for k sufficiently small 

(see Werner, 1962 and Kleinman, 1965b).   It should be noted that we are consider- 

ing k real and positive though the results may be extended to Include complex val- 

ues of k.   We write the expansion 

a> 

&*) = X!   $J*KMm (2.6) 
m=0 

where the factor i is included in the expansion parameter merely as a convenience. 

The functions $    are independent of k and each of them may be determined as 

follows. 
ikR 

Since e       is an entire function, the series 

oo , 

eUa..£iaaL (2.7) 

converges for all k.   Substituting (2.6) and (2.7) in (2. 5), we obtain 

oo l P        j- oo ^        / ; i 

00 .    .   ,       00 

i=0 m=0 J(2.i 8) 

As long as |k (is strictly less than the radius of convergence we may interchange 

summation and Integration and reorder terms in the double series obtaining 

oo oo 

m=0    m 1=0 m=0 

(2.9) 

§ ♦.<««" - iZ Z fc  {♦. t.'- -»- 4 O» 
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Equating coefficients of like powers of k,  with an obvious change in notation. 

yields 

m=0 L1- •J 
10) 

i =0.1.2. 

In order to determine ty   we must employ the boundary conditions, hence we 

must distinguish between the two problems under consideration.   Whether the inci- 

dent field is a plane wave, point source, or linear combination of such sources it 

remains true that the representation of the incident field is analytic in k.   Thus we 

may write 

oo 

$*c(*) = ^ $f( W . (2.11) 
i=0 

The boundary conditions (2.4a) and (2.4b) then imply that either 

*,<?„) = -rx» :r B i    * B (2.12a) 

or 

3^ 

8n 
9   xinc. 

r=r 
= -Tn*,   <r) 

B 

(2.12b) 
r=r. 

Consider first the Dirichlet problem, (2,12a).   Inserting the boundary values in the 

integral representation (2.10) produces the system of equations 

i- V~l (r) = 
f   ' 47r   t—rf (i-m)l m=0 

riinc   8   „i-m-1   „i-m-1   9   i   T JT, 
l   I*.,   TnR +R i^ MdB 

'B (2.13) 
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We treat first the case when i = 0.   Equation (2.13) becomes simply 

$(r) = xo 
inc 3   1 Jir>      1 

— -dB- — 
o     an R 47r 

-i 0 

R    an 
dB (2.14) 

The unknown term on the right is clearly an exterior potential function or in the 

language of potential theory (e.g. Kellog, 1929) the field of a single layer distribu- 

tion of density a$ /an.   That is, if we designate by 0   the unknown function. 

Mr) o 

then 0   satisfies the equation 

i   9$ _1     xo 
R    an 

dB, (2.15) 

V 0 (?) = 0 .        ?€V , 

and 0    is regular at infinity in the sense of Kellog, viz. 

(2.16) 

rp 
r—»oo ! ro 

< a> 
lim 

T~*CO 

o 90 2      o 
ar < oo (2.17) 

Furthermore, with the boundary condition (2.12a) and the expression (2,14), 

the values of 0   on B are specified, i.e., 

0 (r_) = 
o   B $"X)+ lim 

B     r—*r B 

inc _a_ 
an (i) dB (2.18) 

Note that the integration in (2.18) must be carried out before the limit is taken so 

the integrand is always defined.   With this proviso the right hand side of (2.18) is 

well behaved and completely specified in terms of the incident field.   Equations 

(2.16)-(2.18) constitute a standard exterior Dirichlet potential problem which has a 

unique solution.   Next we show that succeeding terms (|   may be written in terms of 

solutions of similar problems.   To this end assume that $ ' $1' ■ • • $* i  are a^ 
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known.   Then (2.13) may be written 

^(r) = F^rJ + ty?) (2.19) 

where 

i 

i 4v  Z»_j(i_m)»   \   Tm    3n 
'B 

B 

and 

?/r) = - — \ — —— dB . 
I 4^   \  R   3n 

JB 

With the assumption that all $'8 are know up to, but not including <[L   F (r) is a 

known function.   Clearly jü (r) is again a single layer distribution, satisfies (2.16) 

and (2.17), and is uniquely determined with the boundary condition 

tyV =-0?B)-Fi(i?B) (2-20) 

Again, care must be used in letting r-*r    in one term of F   but there is no in- 

trinsic difficulty.   Thus (J   is determined In terms of a known function F   and a 

solution of a standard exterior Dirichlet potential problem,  0 .   We have shown that 

is true for i =0,  and also for i >0 provided $,,.$. 9. •• .$   have previously 

been found.   The solution of the Dirichlet scattering problem is then given by (2,6). 

An exactly analogous procedure may be followed for the Neumann boundary 

condition, (2.12b).   Corresponding to (2.13) we have 

8 
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dB       (2.21) 

Furthermore this may be written 

^(r) = Gi(r) + ^(r) (2.22) 

where 

i 47  z—J (i-m):    \ dn * 
m=0 .L 

inc 
m 

dB 

1   ^S       _i  \    Ji     9   „i-m-l JT, 

the second sum is identically zero if i = 0,  and 

^> -tWi (i) dB 

G   is completely determined if $    ,.. .$   are known and ^.(r) is a double layer 

distribution.   That is, ip   is the solution of a standard exterior Neumann potential 

problem, namely. 

Vtf^r) = 0 , ?eV 

ip   regular in the sense of Kellog, (2.17). 

and 

30 

8n 

a$; 
mc 

r=r 
3n 

B r=r 

30 
 / 
3n 

B r=r B 
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We have thus demonstrated that for either Dirichlet or Neumann scattering 

problems successive terms in the low frequency expansion may be determined by 

solving a succession of standard potential problems.   That is, the first term is the 

solution of such a potential problem the second term is expressed in terms of the 

first and the solution of a potential problem, the third is given in terms of the first 

two and a potential solution, etc. 

Before closing this section, a word should be said about low frequency ex- 

pansions of the far field.   The Rayleigh series, (2.6), may be considered as an 

expansion of the near field which, if all terms are included, is also valid in the far 

field.   If only a finite number of terms are known, tnen the truncated series does 

not in itself give much useful information about the far field.   Such information is 

available if we again make use of the integral representation (2.5).   To this end 

note that for large r 

r • r 

ikR 

R 

ikr - ik 
B 

ikr - ik r • r 
B 

,   r = |r|,   r= r/r      (2.23a) 

and 
ikR 

„ e         ., A e 
V -—• ^  ikr — 

K 

ikr - ik r • r 
B 

(2.23b) 

If (r, Ö, 0) and (r^, 0^, 0^) are spherical coordinates of points r and r    respec- 

tively then 
B'  B'rB 

r-r     = r    cosöcos0  + sin9sine   cos(0-0  )    . 
B D I  13 B B _ 

Substituting (2.23a) and (2.23b) in ^2. 5) we obtain, for large r. 

(2.24) 

$(r) /N/ 

ikr 
_e ^ 
47rr 

-ikr • r 
..A      A 
ikn • r e 

B -ik?-?B    df1 

9n i dB (2.25) 

10 
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-xkr • r 
Now if we substitute expansions of $ and e in the right hand side of (2.25) 

and rearrange terms we obtain 

CD * n w 

4irr ^^ ^Q   (i-m)I   J   '       B \       xm-l      dn  ) 
B (2.26) 

where $ , = 0. 

Examination of equation (2.26) reveals that knowledge of a finite number of terms in 

the low frequency expansion of the near field (the 6   's) provides similar informa- 
••m 

tion about the low frequency expansion of the far field coefficient, i.e. the coeffi- 

cient of e    /r.   More specifically, in the Dirichlet case, when the boundary con- 

ditions specify $     on B for all m,  then knowledge of the first i   -r— 's 
m 9n 

~— , ~r~ , ...    T"   J   will provide, with equation (2.26), the first I terms of 

the far field expansion.   In the Neumann case, ( ——   on B given for all m) the 

first i Q   !s will apparently give i+1 terms in the far field.   However, it may be 
m . 

shown that, whether §      is a plane wave or a point source, 

-~   dB = 0 (2.27) 

'B 

hence only i terms in the far field are specified. Or another way of saying this is 

that, in the Neumann problem, i near field terms produce 1+ 1 far field terms but 

the first term, i.e., the coefficient of (ik)  ,   is always zero. 

11 
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in 
STEVENSON'S METHOD 

In this section we shall describe Stevenson's attempt to generalize the 

approach of Section 2 to electromagnetic scattering and pay particular attention to 

the shortcomings, rather than the strong points (which are numerous) of Stevenson's 

work.   To effect some simplification, we shall treat only the case of scattering by a 

perfectly conducting surface whereas Stevenson considered more general scatterera 

It seems clear, however, that both the criticism in this section and the correction 

in the following section may be applied in the more general case. 

The surface geometry and notation are the same as introduced in Section 2 

and depicted in Fig. 1, which is here reproduced for convenience. 

z v»r 

Figure 1 

By an electromagnetic scattering problem for the perfectly conducting sur- 

face B is meant the problem of determining how the presence of the surface per- 
■* inc "*"inc 

turbs an incident electromagnetic field, (E     , H    ).   That is, we seek a solution 

of Maxwell's equations 

VxE = ikH, 

VxH = -ikE , 

V- E = 0 , 

V- H = 0 

reV (3.1) 

12 
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subject to the boundary conditions 

:*.inc 
r=rB 

(3.2) SXEL. =-axEmcL. .      a-öl     ^a.H1 

rr=rB ir=rB |r=rB 

and the radiation co.idition 

lim    ^   .__   5»v    .,   ^        lim     -k   .      -». -* 
r_>(a) rx(VxE)-: ikrE =    _^     rx(VxH) + ikrH = 0 (3.3) 

uniformly in r 

(The divergence conditions and boundary condition on H are redundant, i.e. may 

be deduced from the other conditions.) 

In attempting to show how to reduce this problem to that of solving a series 

of potential problems, the procedure parallels that followed in the scalar problem. 

Corresponding to the Helmholtz integral representation (2.2) we employ the expres- 

sion derived by Stratton and Chu (see Stratton, 1941) which expresses the field at 

any exterior point in terms of its values on the surface B,   [wilcox (1956) also de- 

rives these formulas but strangely omits any reference to the Stratton-Chu work! 

i   r ^      i, r iw-     , r ikR 

'B -'B 
(3.4a) 

ikR .,    \       ikR 

(3.4b) 

Recall that R is a function of the coordinates of two points f and r  ,  everything 
B ; 

else in the integrands on the right hand sides is a function of the integration vari- 

ables (coordinates of r ) and V operate-: on r.   For future use, we denote by V B » J     B 
the operator on r     and note teat 

13 
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ikR ikR 

R B    R      ' *6-0} 

Now following Stevenson as well as the procedure in the scalar case we assume that 

E and H may be expanded in series of powers of k, i.e., 

oo oo 

E(r) = y    E   (r)(ik)m, H(r) =   >     H   (r)(ik)m . (3.6) 
feo    m m^O    m 

As before, tiis assum^ion has been proven (Werner, 1963), that is, it is no longer 

an assumption but a consequence of (3.1), (3.2) and (3.3).   It is perhaps worthy of 

note that the reason this entire discussion concerns three-dimensional scattering 

problems is that convergent expansions of the form (3.6) do not exist for two-dimen- 

sional scattered fields. 
ikR 

Next we expand the free space Green's function,  e     /R,  in a series, viz, 

ikR      ^  ...JJ-l 

then substitute (3.6) and (3.7) in (3. 4a), (3. 4b).   After interchanging summation and 

integration, reordering terms and equating like powers of (ik), we obtain 

^^=irVx2_J-
I7 \    axE,      R^dB l 47r        *•—-f m'. 1 i-m m=0 JB 

i-1 
1     > 1   \ ^   « T.tti-1 J«     1     >      1   „\ A  =»      „m-1 ._ -r- /   t   —-  \ nxti. R       dB-v~/"~:v\n'E.     R       dB 

47r ^—7J  m     \ i-m-1 47r ^—^ ml     \        i-m m=0 X m=0 

i = 0,1.2s.. (3.8a) 

14 
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H4(r) = -^xy]-^ \ ÄxK,     Rm"1dB--Ly,-^\ fixE,       ^^^ I 4^       /^—J m'# |_Ul 4^ ^__J m>    \ i-m-1 
m=0        JB m=0        JB 

JL 
47r C. 1 m' 

m=0 
V  \   n- H,     R"

1
"
1
 dB 

m: i-m 
;B 

(3.8b) 
i-1 

where   /     = 0 when i = 0. 
i=0 

Furthermore, substituting the series (3.6) in Maxwell's equations (3.1) yields 

VxE    = 0 
0 

VxH   = 0 
0 

(3.9) 

VxE^H^ VxH^-E^ i =1,2,3... (3.10) 

V • Ei = 0 V-H   = 0 
1 i =0,1,2,3 (3.11) 

and the boundary conditions (3.2) become 

nxE. 
r=r 

nxE. 

B 

a-H, 
r-r 

B r=r 

/N   ^mc -n- H 
i 

B 

(3.12) 
r=r 

B 

These last equations result from the fact that, as with scalar sources, represen- 

tations of electromagnetic plane waves or point sources are analytic in k.   There is 

one more condition of importance.   With Maxwell's equations and Stokes'theorem it 

is a simple matter to show that 

n-EdB = 0, \   n-HdB=0 (3.13) 

'B ^B 

It follows then from the series expansions (3.6) that 

n- E^dB = 0 , n- H^B = 0 

'B m 
(3.14) 

i = 0,1,2,3, 

15 
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Stevenson then proceeds to show how the zeroth order terms, E   and H . 
o o 

may be determined as solutions of potential problems.   For the perfectly conducting 

case this reduction to potential problems for the zeroth order terms will be included 

in the general treatment of the following section, and. since we have no quarrel with 

Stevenson's results for these terms, the details will be omitted here.   To calculate 

higher order terms, Stevenson proposes the following procedure: Suppose 

Eo' Er"'Ei-l'  Ho' Hr*'*Hi-l are known-   To find E   or H    determine first 
a particular solution of (3.10), that is, find functions F and G   such that 

i i 

VxFi = H^ and VxGi = -Ei 1 

The differences between these particular solutions and the true coefficients, 

E - F. and H.-G„  are gradients of unknown potential functions (not necessarily 

regular at infinity) i.e., 

Et = F^V^ (3.16a) 

"i:=S+V^i (3-16b) 

Substitute (3.16a) and (3.16b) into the integral expressions (3.8a) and (3.8b) respec- 

tively, also introduce the boundary conditions, (3.12).   There results equations for 

E   and H   which contain some known terms and some unknown.   It is then possible 

to show that the unknown terms are now exterior potential functions (regular at in- 

finity) which may be determined as solutions of standard potential problems. 

The process, once begun, appears to be both correct and, in the detaus of 

its execution, ingenious.   The source of trouble, however, is right at the beginning; 

namely how does one determine particular solutions of the equations 

16 
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In a separate paper, Stevenson (1954) points out that necessary and sufficient 

conditions for the equation 

VxF(r) = f(r) , rcV (3.17) 

to have a solution are 

V-f = 0 (3.18) 

and \   n-fds = 0 (3.19) 

where, if B consists of a number of disjoint surfaces, B .B., then (3.19) must 

hold for each separately, as well as the sum. With this we have no quarrel. Stev- 

enson then goes on to assert that an explicit solution of the problem is given by 

F(?>=irVx\ :S7*-FT dv    , (3.20) 

space 

provided that f satisfies (3.18) and (3.19). 

Since the integration is over all space, not merely V,  the exterior of B. 

this expression requires some explanation.   In the first place,  f(r) is originally 

defined only exterior to B.   To extend the definition to the interior, Stevenson pro- 

poses to choose f so that (3.18) remains true and that n • f is continuous at B. 

This he accomplishes by choosing 

f(r) = Vu(r)    , r interior to B (3.21) 

where 

V^i =0    , r in B (3.22) 

17 
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and 

n- Vu 
. 9u <•   •* 
z   *■"  = n. ] 

■»   -<» an Jk    A -* -k r=r„ r=r„ r=r^ B B B 

(3.23) 

This is a standard interior Neumann potential problem for u and has a unique solu- 

tion provided that 

(3.24) 

That (3.24) holds is guaranteed by (3.19).   Thus the extension to the interior is 

carried out, once this potential problem is solved.   Equation (3.20) then is the re- 

quired solution provided the integral exists, that is, provided 

f = 0(l/r ) as r->oo . (3.25) 

Stevenson describes the proof and we shall demonstrate it in detail in the following 

section where we again make use of this device.   Now however, we accept it and 

finally get to the heart of the matter, namely, what do we do if f is defined origin- 

ally in the infinite region V,  but does not satisfy the necessary order condition at 

infinity, equation (3.25)?   This in fact is exactly what happens since  E   and H 

vanish as l/r   only for i = 0 which allows us, using the method described, to de- 

termine E    and H   but apparently no higher order terms. (Actually we may go one 
2 

term farther since the l/r   terms donrt contribute to the integral.)  Stevenson was 

aware of this and proposed the following procedure: 

If V is the unbounded region exterior to B and if f does not vanish at infin- 

ity to the required order, first surround B by a surface B .   Then redefine f ex- 
o 

terior to B    in terms of the solution of an exterior potential problem, namely, let 

f(r) = Vu, r exterior to B (3.26) 
o 
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where Ä. 

an 
/» = nf (3.27) 

r=r r=r 
o o 

u reguJar at infinity. 

This problem has a unique solution u and, since 

n-fdB   = \     -—dB   = U (3.28) 
o       \     dn     o 

'B JB 
o o 

2 -* 
it follows that u = Od/r ) hence f will satisfy (3.25),   With f thus redefined, the 

solution (3.20) exists and is valid in the portion of V interior to B   where B   can 
o o 

be taken arbitrarily large. 

With that, Stevenson apparently considers the subject closed.   The implica- 

tion is that since B   may be taken arbitrarily large we may take it as a sphere 

whose radius becomes infinite and then (3.20) will represent the solution we seek 

throughout V.   But, unfortunately, if f ivere a function whose original behavior at 

infinity was insufficient to guarantee existence of the integral in (3.20), then the 

limit of the integral with f redefined may not exist as the radius of B    becomes in-  i  0 

finite.   This argument by which the unpleasant behavior at infinity is avoided (that 

is, confining attention to a finite voluLxC, carrying out the calculation, and then 

letting the volume become infinite) is not only employed by Stevenson but others as 

well, e.g. Morse and Feshbach (1953, I, p. 53),   It does produce the desired results 

in many cases.   For example, the process is valid whenever f is the gradient of a 

potential function, regardless of its behavior at infinity (which includes the example 

'''If B    is any surface entirely containing B and equations (3.18) and (3.19) hold, 

then (3.28) follows from Gauss' theorem relating volume and surface integrals. 
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used by Morse and Feshbach).   That it may also yield unacceptable results is illus- 

trated in the following example, where f is not vbe gradient of a potential function 

though still satisfies (3.18) and (3.19).   This indeed is representative of the be- 

havior one would encounter in actually attempting to find particular solutions of 

(3.10). 

Let 

Ur) = Vxr   i   = mr       (zi -yi ) , (3.29) 

J 2     2     2 
= yx +y +z 

Clearly a particular solution of Vx F = f is 

-*       m A 
F = r    i (3.30) 

x 

However, let us attempt to determine a particular solution using equation (3.20). 

First of all it is a trivial calculation to observe that (3.18) and (3.19) are satisfied 

with this particular f.   For this simple example we have no scattering surface B, 

but with Gauss' theorem it is clear that for any closed surface B,    \ n • f dB = 0. 

Furthermore, the function f clearly misbehaves at infinity so that to use (3.20) we 

must employ the redefinition of f.   Thus choose B   to be a large sphere of radius 

r .  Next define o 
-A -k 

f = f       , r ^r 
'v o 

(3.31) 

=   Vu     , T  ^ T 
O 

where 
^2 
V u = 0 r>r 

o 

n-Vu = n« f 
r=r 

o 
r=r 

o 

u regular at infinity. 
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Then 

r 
F(?) = --Vx   \ -pr-^r-r dv . (3.32) 

47 J ir-rol 
all 
space 

Note that with our choice of B   and f, 
o 

ni = r-VxrmT  = r-m^'^ösinÄ + ScosÖcosÄ) = 0. (3.33) 
x o r=r 

o 

Hence u is a solution of the homogeneous Laplace equation, regular at infinity, 

satisfying homogeneous boundary conditions on B   which means that 
o 

u = 0 (3.34) 

Thus 

f (? ) C Ur) 
'"     V \ V 
i^   u \ dv =   \ p:   3 * dv (3.35) 
lr-rvi lr'rv! 

'all Jr 4T 
V      o 

space 

This integration is easily performed yielding 

\ f(r ) 

] 
\   0       \ \ 2 ^ xr 

i-w   a: . dv =  \    dr    \   d0    \   d0 r  sinO    rs   .»■ r i 
jr-r,j \       v\v\      vv        vjr-rjx 

r <r V ^0 J0        Jo v 

v     o 

47r /   m    or      \ , <v       * 
^-    r    - —-T     (zl  -yi ), r<:r (3.36) 

m+3 
r 

47r      m       o        .A       A . __p    __     _.   (Z i    - y i   )        r ^ r 
3    mi-3        3 y       z o " 

r J 

Now we form F using (3,32) and find 
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_                     n m-1 
f^^v          2   m*   , m+2   m^      mxr A 
F(r) = - - r    i   + ——r r   i ~r~ r r<r 

3   o   x    m+3        x        m+3 o 

(3.37) 
m+3 

mr 
= r (i -3-r) r>r 

3(m+3)r      x      r 0 

It is a simple calculation to show that this F is indeed a solution of Vx F = f when 

r < r .   However, it is also clear that F as defined in (3,37) does not exist as o 
r ->oo.   Furthermore, if r   remains finite, then the function F not only exhibits 

o o 
an unwanted dependence on an arbitrary parameter ( the radius r   of B ) but also 

o o 
is discontinuous on B .   This violates the tacit requirement that F be a differen- 

o 
tiable solution of VxF =t for all points in V. 

How then do we proceed in those cases when Stevenson's scheme for finding 

oarticular solutions apparently fails?   One method would be to attempt to show that 

the undesirable part of F is the gradient of a scalar function and can therefore be 

neglected; the remaining part of F would still be a solution of VxF = f.   In the 

example above it is easily seen that F may be written 

TO—1 
*      m-t-2   m*      mxr A , „,   ö   ^   , ,„ „„. 
F=  —^r   i -  •— r + V --r   x (3.38) m+3        x        m+3 l    "   -     '' 

2 m \ 
- r   x] 
3 o    / 

hence a particular solution of Vx F = f,  valid everywhere in V may be obtained 
,   ,        , /   2   m   \ 

merely by deleting the term V I - - r   x I .   In general, however, the process of 

identifying the unwanted terms with the gradient of some functions may not be so 

easily accomplished and in any event adds yet another complication to an already 

involved procedure. 

Rather than attempt to prove that this procedure can be made correct in the 

manner indicated, we shall end this section having demonstrated that, as it stands, 

Stevenson's procedure is ambiguous.   In the next section we shall show that this 
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problem of finding particular solutions of (3.10) may be avoided entirely and the 

process of determining successive terms in the low frequency expansion may be 

made more straightforward. 
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IV 
ELECTROMAGNETIC SCATTERING - AN ALTERNATE APPROACH 

In this section we again treat the problem of extending to electromagnetic 

scattering the method of Section 2 whereby scalar scattering problems are reduced 

to a series of standard potential problems.   Though the method described here de- 

parts from Stevenson's approach, the debt to his work, both in ideas and technique, 

is large. 

We formulate the problem exactly as in Section 3 and the details will not be 

repeated.   The starting point for this analysis is the integral representation of the 

coefficients in the low frequency expansions of the scattered field, equations {3.8a) 

and (3.8b).   That is, we write the field scattered from the perfectly conducting body 

B,  as 

UP op 

^r) = Z_,E (rW . H(r) = /  .H(r)(ik)f. (4.1) 
1=0 i=0 

then the boundary conditions at the surface B are 

nxEi = -fixEi      , n'Hi = -n-Hi     ,        i = 0,1,2... (4.2) 

and, furthermore. 

n-E^dB^ \   n-HiclB = 0 £ = 0,1,2,....     (4.3) 

'B -'B 

The Stratton-Chu integral representation, after expanding in powers of k, 

equating coefficients and using the boundary conditions may be written 

n • E 
E/r) = Fi(?)~^v\   —^dB (4.4a) 
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H^?) = G^ r) + — Vx \   —^- dB (4.4b) 

'B 

where 

F/r) = - f Vx 2_. A \   nxEfC R^^B (4.5a) i 47r *■—^ ml   I i-m m=0        .)B 

i-i      r\ i         \ 
+
 T"/J~T\öXH,       ,R dB- 7- /  .—7 V 1  n- E, 

47r >!-—^ ml  l          i-m-1 47r ^—^ ml                i- m=0       J m=l           J 
R1"-^ 

and 

G4(r) = -7- Z^-^T Vx\  nxH.     R^^B (4.5b) 
i 43r *■—r»ml \ i-m 

i-i     r L,      f 
1   \      1  \   A   =kinc     „m-1 ,„ ,   1   \    1    „\   A   ^inc „m-1 JT, 

m=0        ^ m=0 JB 

Equations (4.4a, b) and (4.5a, b) hold for all i = 0,1, 2, ..., however, the terms 
i-1 i 
/      and    £_^ are identically zero when 1 = 0.   Observe that F   and G   are ex- 
m=0 m=l 
pressed in terms of the incident field and preceding terms in the series for E and 

H, i.e., E , E,, ...E. ,,   H , H., ...H^ ,.   Thus if we consider the problem of 
o     1 *-l      o     1 f-l 

finding E  and H , assuming that the preceding terms have already been determined, 

then F, and G. are known functions. 
i i 
The approach, ours as well as Stevenson's, is to show that the unknown 

terms in (4.4a) and (4.4b) are gradients of exterior potential functions which may 

be determined as solutions of standard potential problems.   Stevenson went to con- 

siderable effort and complication to formulate these problems.   The method of this 

section, though still complicated, hopefully represents a simplification.   In any 
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event, the present procedure for finding E   and Hy  or at least defining them in 

terms of solutions of potential problems is based on the integral relation (4.4a) and 

(4,4b) and does not require, as Stevenson does, first finding particular solutions of 

Maxwell's equations. 

Consider first the task of determining E ( r).   We observe, and this is the 

essence of the approach, that the unknown term on the right hand side of equation 

(4.4a) is itself the gradient of an exterior potential function, a single layer distri- 

bution of density n • E .   It is possible to formulate a boundary value problem for 

this term as follows.   Let 0   denote the unknown potential, i.e. 

0 =--i 
re A~r 

n-E 
4   dB (4.6) 

Then 

I 47r   \        R 
'B 

E^V^i (4-7) 

where F. is known and 
i 

V20{ = 0 r in V 

0   regular at infinity in the sense of Kellog 

nxV^ nx (E,,     + FJ 

t=rB r-r 
B 

This is rot quite a standard Dirichlei potential problem in that the boundary condi- 

tion as given may be shown to specify the function 0   on the boundary to within a 

constant.   That is, specifying nxV0   on B is equivalent lo specifying 0 +c on B 

where c is constant, but unknown.   This constant is evaluated by solving the poten- 

tial problem with the ambiguous boundary condition, constructing the corresponding 

E   with equation (4.7) and then imposing the requirement 
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A 

n-E^B = 0 (4.3) 

B 

The procedure for finding E   is thus seen to be reasonably straightforward 

once we observe that the unknown part of E   is the gradient of an exterior potential. 

This observation spares us much of the complication of Stevenson's approach. 

The determination of H   requires more work since it is not obvious that the 

unknown term on the right hand side of {4.4b) is the gradient of an exterior potential, 

except when i = 0.   In fact it may be shown that when i ^ 0, this term is definitely 

not the gradient of an exterior potential function.   Nevertheless it is possible to 

retain some of the simplicity inherent in the determination of E   by adding a known 

function to the unknown term such that the sum is the gradient of an exterior poten- 

tial function.   The determination of the function we must add agam requires the 

solution of a potential problem. 

Thus we introduce a function g   as yet unspecified, into equation {4.4b), ob- 

taining 

Hi(r)-Gi(?)-gi(?)+^Vx \   -^dB + g,(T)  . (4.9) 

It is well known and/or easily verified that a condition sufficient to guarantee that 

a vector be the gradient of a scalar is that the curl of the vector vanish, i.e. 

VxA = 0 =^   A = W. (4.10) 

Thus a condition sufficient to guarantee that we may writ. 

( A       "*■ 
i \    nxH 

~- Vx \    -j- dB+ 8/?) = V^ (4.11) 

is 
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1   ..   .    \    "X"l 
4? VXVX \   "IT dB + Vx8i = 0 (4.12) 

Since g^ is as yet unspecified, we use (4.12) as an equation for g   and seek a par- 

ticular solution in terms of known functions, i.e.. terms not involving H   or E 
* ^    i i* 

Since H^ appears, we must first put (4.12) in suitable form.   First we use the vec- 

tor identity Vx Vx = V(V • -V^ together with the fact that for r in V. 

V2 ! 
R(r. r_) 

JD 

ITT    =  0 

to rewrite (4.12) as 

Vxg^r) =-^-  w \    -~dB. (4.13) 

Recall that R is symmetric in r and r   (eqn. 2.1) and V~ = - V   — ,  where V 
^ B R B R' J 

operates on r and VB on rB,  hence (4.13) may be written 

Vx^) = iV\   VBi   ,Sx«idB' <4.14) 
^B 

or, on employing the properties of the scalar triple product, 

VX^(?) = "4^  V\ Ä-VB^xHidB. (4.15) 

This we rewrite as 

Vxg7f) = .^  v\   fi-(VBx^-ivBxHi)dB (4.16) 

^B 
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and, since Stokes* theorem implies 

n-VBx— dB = 0, (4.17) 

B 

we have 

Vxg/(f) = ^v\    l^xH^. (4.18) 

'B 

But Maxwell's equations (3.10) imply that 

VgXH^) = -El_l(rB) t >0 (4.19) 

= 0 1 = 1 

hence we have, finally. 

Vxg^r) = -^ V \    ——= dB , i >0 (4.20) 

= 0      , i -0 . 

We have thus succeeded in rewriting (4.12) in terms of known functions since we 

have assumed that E.     is known.   Now we want a particular solution of (4.20). 

Clearly when i = 0,  g  =Üisa solution.   When i > 0,  we employ Stevenson's 

method ^or producing particular solutions of the equation   Vx F = f,   First of all 

note that the right hand side of (4.20) is the gradient of an exterior potential function 

(single layer distribution).   Thus, introducing the notation 

n- E 
ui(?) = -i"\ —r1 <*■ (4•21, 
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(4.20) may be written 

Vxg^r) = Vu®       . reV (4.22) 

Stevenson has shown that necessary and sufficient conditions for (4.22) to have a 

solution are [(3.18), (3.19)] 

V-Vu^ =0 reV (4.23) 

(4.24) 

6 
The first condition, (4.23), is clearly satisfied since, as noted,  u   is a potential 

function.   To show that (4.24) is also satisfied we use Gauss' theorem to write 

r-Vu^dB (4.25) 

where B     denotes a large sphere whose radius approaches infinity.   The volume 

integral term vanishes by virtue of (4.23) and the surface integral over B    will 
CD 

also vanish if 

VuJ = o(l/r2) as r-^oo . (4.26) 

That (4.26) is satisfied may be seen by examining the structure of u^ exhibited in 

the defining equation (4.21).   Thus 

i  V ^ii^ 
Vu,(*) = -~V  \       p.: 1   *    dB (4.27) 

i 47r       1       R(r, r ) 

or, for r > max r_, 
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^C r? 
Vu^D = -i V X. \  A- V.r^)-^ Pm(CosT)dB (4.28) 

m=0 JB 

where cos7 = cosöco8e_ + sin0smeT1cos(0-0--) and P    is a Legendre polynomial 

of order m. 

The m = 0 term vanishes by virtue of (4.3), 

n-EjdB = 0    , 1 = 0,1.2,..., 

v-'B 

hence 

Vu;(r) = -T-  V7     -±-  \   l-Et AT^T^P   {co8y)dB (4.29) 
i 47r      *■—J    m+1   \ 1-1   B   B   m m=l  r        JB 

From (4.29) it is clear that 

VuJ(r) = CKl/r3)      or     o(l/r2)     as r-X» (4.30) 

hence (4.26) holds which in turn means that (4.24) is valid.   Thus we have estab- 

3 
process, that the right hand side of (4.22) is 0(l/r ) at infinity.   Now we use Stev- 

lished that equation (4.22) has a solution.   Furthermore we have shown, in the 

process, that the right hand side 

enson's solution to this problem. 

We define an interior potential function,   u (r).   r interior to B,  as follows. 

vV(r) - 0 r interior to B (4.31) 

n.Vul
4(r)! =n-Vu^(r)| (4.32) 

lr=rB |r=rB 

This is a standard interior Neumann problem for u (r) and has a solution provided 

that 
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]*' ■■'■ 
\   n-Vu^dB = 0 (4.33) 

but this is satisfied by virtue of (4.24) and the boundary condition (4.32).   Recall 

that n above is always directed from B into V,  the exterior of B. 

Now, according to Stevenson a particular solution of the equation (4.22) is 

given by 

V ue.(? ) \      V u^r ) 
V     «     V \ V   i      V   dv+   \ „       dvV (4.34) i 4jr        1   \ R        ""        j R 

wliere V   is the interior of B,  and V the exterior. 

To demonstrate that (4.34) is indeed a solution of (4.22) is a relatively sim- 

ple calculation.   Again using the identity Vx Vx = V(V • -V^ we have 

r-,      ■*  l-*\ l„f„ \ ViV Vxg1(r>=-V^V   j   -^_dv + v 

^{-^tn)'-^-fJ (4.36) 

therefore, for r in V, 

e,^ 
i       /      \     V u;(f ) \       V u;<r ) 

Vxg7?) = Vui
e(r)+^v(v.\    -V_L_VLdv + v.\      _v±JL dv j     (4 37) 

;V. 
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1 lei 
Now using the facts that V-r = -V -- and u. and u. are both potential functions we 

it V K * z 

obtain 

.        \ V u^r > ,     C V u^ ) 
Vxg.(r) = ^u,(r; - T" v   \ v  *  S  dv---V \   V ■ — dv. t t 47r        j    v R 47r      j      v R 

1 (4.38) 

Now we use Gauss' theorem, taking care of the signs of the normals (n on B is al- 

ways directed into V.  the exterior) to obtain 

(4.39) 

Actually there is another surface integral term over a large sphere at infinity but 

this vanishes by virtue of (4.30).   The integral in (4,39) vanishes because of the 

boundary condition (4.32) thus verifying that 

Vxg^r) = Vu^r)    . reV . 

We may cast g^ r) in slightly more convenient form as follows.   Again 
1 1 

using the fact that V— = -V —     (4.34) becomes 
R v R 

g/^-TM   V  ^xV uV )dv--L \     V^xVu;(r)dv,      (4.40) 
t 4?r\vRviv 47r\       vR       viv 

i 

or since curl of the gradient is identically zero, 

V uj(r ) \ V ujtr ) 
i,<r)=-7-   \    VxV-,Vdv-7-\    V x   V ^  V   dv .     (4.41) 
i 47r     \      v R 47r    v      v R 

i 

33 



THE     UNIVERSITY     OF     MICHIGAN 
7133-4-T 

Now employing a famous, but apparently nameless theorem of vector analy- 

sis. 

VxAdv =   \  nxAds   (S encloses V and n is out of S), 

V JS 

equation (4.41) becomes 

-,',_ j_ \ HV^E'-V^B!! 
*/-•) = -    \-^ 5 -dB        .     I>0 (4.42) 

B 

An alternate form of (4.42) is found to be 

zp) = -i;Vx\        R       dB (4-43) 
J
B 

Again the behavior of Vu    at infinity, (4.30), causes a similar integral over a 

large sphere to vanish, 
e i 

In this form it is clear that the tangential components of Vu    and Vu   on B 

must be unequal if g    is to be different from zero.   In fact they are necessarily dis- 
e i 

continuous.   Since u   is a potential function regular exterior to B,   u    is a poten- 

tial function regular interior to B and their normal derivatives were defined to be 

continuous at B, then the tangential derivatives cannot also be continuous.   If so, 
i e 

u   would be a continuation into the interior of B of u .   The resulting function 

would be a potential function regular everywhere in space and therefore v/ould nec- 
e 

essarily be zero.   But u    (see eqn. 4.21) is not identically zero. 

We have thus determined a particular g    such that (4.12) is satisfied.   This 

in turn guarantees that equation (4.11) holds, that is, with the g   we have found we 

may write 
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nxH, 

47 Vx ir^^i = ^i (4.11) 

'B 

With equation (4.34) or (4.43) which expresses g. as a curl, it follows upon taking 

the divergence of (4. il) that 

V2^ = 0 . 

On expanding l/R in (4,43) it follows that 

2 
g^r) = 0(l/r ) as T-KX> 

nxH 
Also Vx 

R 
- dB = 0(l/r2)   as     r CD 

2 
hence ip. is regular in the sense of Kellog. (Actually W = 0(l/r ) does not imply 

completely that ip. is regular.   There may be an additive constant which would im- 

ply I r^'    is not bounded.   Since we are interested in V^ , which removes this 

constant anyway, we may choose it as zero to begin with and take tp  to be regular.) 

With equation (4.9) and the boundary conditions (4.2) we may formulate a 

standard exterior Neumann potential problem for ip..  namely 

vV = 0 reV 

(p. regular at infinity in the sense of Kellog (4.44) 

n-W, 
r=r 

8n 
B r=? B 

,  A   ^mc    *   =* <-n' H,    - n • G.+ 

r=r 
B 

The solution of this problem then determines H (r). 
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To summarize the procedure we have established: 

If an electromagnetic field, 

CO oo 

E^r) =]>] EfC( W   .       H^r?) = Y HfCrW        (4.45) 
i=0 1=0 

is incident on a smooth finite perfectly conducting surface B in three space then the 

coefficients in the low frequency expansion of the scattered field 

OP oo 
v 1 

E(r) = ^ E (rHik/   , H(r) = >    H (rW (4.46) 
i=o i=o 

are given by 

E^r) = Fi(?) + V0i (4.47) 

iyr) = G^r) - gi(r)+ V^ (4.48) 

where 

i      r i-i 

i 47r ^-—-J ml    \     *    t-m 47r £—* m'. 
m=0 !„ m=0 

^B 

1  V \    5- E,      R"' ^dB.      i>0 
i-m-1 47r ^-~, ml      \ i-m 

'B ^B 

(4.49) 

.      n x E 
F (?) = ■ 7-Vx \    —~- dB o 47r \ R 

B 
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G^f) 1  „    \    _1    \   *   „      «ni~l ,^, .   1     >      1    \   A   ±iDC       m-1 

m-1        Jg m=0        JB 

+ f Z^^V^.   S-^R^dB.       i>0 
4?rfcomI   Jß     i-m 

a.H1110 
(4.50) 

G (r> 
o 47r R dB 

I/?) 4T\     R ^ 
B 

1 _   \    n „ e     i. ._, 

'B 

i>0 

go(r) = 0 (4.51) 

e... 1   \    n-Ei-l 
Ui(r)=-^ 

'B 
R dB i>0 

and u ,  0     and ip. are all soluticms of standard potential problems. 

u.(r) is an interior Neumann potential: 

r interior to B V2^ = 0 

n ■ Vu   = n • Vu on B 

0   is an exterior Dirichlet potential: 

^"$1 = ^ r exterior to B 

0.  reg at oo 

nxV^ = -nx^ + F^      on B 

1 
^ 

(4.52) 

(4.53) 

(4.54) 
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(we must use   \ & • E dB = 0 to determine an arbitrary constant arising 

from this form of the boundary condition), 

and ^   is an exterior Neumann potential: 

v ^' =0 r exterior to B 

tf/j reg at oo 

n«V0i=-n-Hi    -n-G+n-g      on B -^ 

(4.55) 

n is the unit normal on B always pointing into V, the exterior of B,  and R is the 

distance {r-fBj from a point ?„ on the surface (the integration variables) to a 

field point r. 

We complete this section with a brief discussion of the low frequency expan- 

sion of the far field. Here we proceed exactly as in the scalar case. We incorpor- 

ate the facts that, for large r. 

ikR        ««'-*• V ikH i«r-?-rB) 
e      ^   e  _ e       ., A e __ ^ — V ^v 1kr  
R r R r 

in the Stratton-Chu integral representations of the scattered field, equations (3.4a) 

and (3.4b), also employing the boundary conditions on the surface (3,12), obtaining 

ikr.,  \      -ikr-r^   r 1 
E(r)—^M    e B   L-rxrnxEmC)-f^xH-^.EjdB (4.56) 

JB 

ikr.. \       -ikr- r    r .   -i 
H(r)'v—T  \    e [rx(nxH) + nxE     +rn-H   J dB      (4.57) 

JB 

Now we expand the field quantities, equations (4,45) and (4.46) and the factor 
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-ik r • r 
i and reorder the terms to find 

ikr v—^       .. i v—• . , .i-m 
E<r)^i?7^H(ik)   ^^)r \ ^'V   L-rx(iixEm > i=0 m=0 

B 

dB (4.58) + nxH   -rn-E m nu 

OP J  . ikr ^r—•       4i< \-—' / ,^-m 

SrD^Z^Efe   \   (r-f/^"'*"^ 
i=0 m=0 

A   -»inc. A A   r* inc"],_.       .. cn. + nxE      +rn-H        dB       (4.59) 
m m J 

The i = 0 term in (4.58) and (4.59) always vanishes   the integrals  \ n • E   dB 
p L "%       m 

\   A   ■* / ■* inc •* and   \ n-H are zero for all m, (equation 4.3) and, since E       and H   may 
JB       m o o 

both be written as gradients of potential functions, we may use a well known re- 

sult of vector analysis which implies that   \ fix V0dB = 0,  for B closed and any 

\   A   ^inc 
0 to see that   \   fixH dB and   \ nxEmcdB   also vanish. 

^B        0 ^B        0 

rewrite (4.58) and (4.59) as 

.   Therefore we may 

i=0 m=0 JB 

• [-MÄxE^V^xH    -rÄ-E   IdB L m m ml 
(4.60) 

and 
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«(D^v-^k z^dk) 2^177r:-y, \ (r.rB) 
i=0 m=0 JB 

rx(nxH   ) + nxS       +rn-H       dB 
L m m m J m j 

(4.61) 

This illustrates a famous result of Rayleigh: the leading term in a low frequency 
2 

expansion of the far field is proportional to k .   Stevenson criticized this form as 

being inefficient since one apparently needs to determine i+1 non-vanishing near 

field terms in order to obtain i non-vanishing far field terms.   Actually this is not 

completely true, as a close examination of the "extra" near field terms reveals. 

These are the m = i+1 terms in (4.60) and (4.61), namely 

[^x(nxE^) + nxHi+1- rn- E^JdB (4.62a) 

»B 

and 

\   [fx(ilxHm) + nxE^ + H- H^]dB (4.62b) 

JB 

which we rewrite as 

-rx   \  nxE^dB+\    nxHi+1dB-r\   n • E^ dB (4.63a) 

^B JB JB 

and r P P 
^x  \   fixH|+1dB+ \   AnxE^dB + ?\    n-^dB   . (4.63b) 

JB JB JB 

The terms involving the incident field are effectively known since the inci- 

dent field is given.   Also, from equation (3.14),   \   n • E     dB = 0 and the only 
JB 

        40       —- 



THE     UNIVERSITY     OF     MICHIGAN 
7133-4-T 

unknown part of these "extra" terms involves 

nxHmdB (4.64) 

'B 

With (4.48), however, it follows that 

SxH^dB 

B 

C 
=   \   {nxGm-nxgm-Hnx V^^dB (4,65) 

But 5& 
JB 

x W     dB = 0,  using a vector identify we have employed before, and 
rrl 

G      is given, (4.50), in terms of the first i near field terms.   The only unknown 

part of this "extra" term involves g      which does require the solution of an inter- 

ior Neumann problem  see equations (4, 51)-(4.53) .   This is considerably less than 

requiring complete determination of E ^  and H     ,  but is still unsatisfactory. 

Repeated attempts to determine this "unknown" part without solving for g^. have 

so far been fruitless.   The alternatives are also less than overwhelmingly desirable 

Stevenson provides a generalization of Rayleigh's continuat on method whereby the 

near field terms for large r are matched with multipoles for small k (thus defining 

the mtdtipole moments) then using the far fields of the multipoles.   This of course 

involves expanding the near field terras in spherical harmonics which may involve 

as much labor as solving the required interior Neumann problem.   Still, in princi- 

ple, Stevenson's method of continuing into the far field is preferable since it does 

not require the solution of another, albeit simple, problem in order to obtain the 

same number of terms in a low frequency expansion of the fa? field as are available 

in a low frequency expansion of the near field.   The price is apparently requiring 

both to be represented as expansions in spherical harmonics 
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AN EXAMPLE-S?\TTERING BY A SPHERE 

To illustrate the procedure derived in the previous section, we consider the 

problem of scattering of a linearly polarized plane wave by a sphere.   The incident 

field is taken to propagate down the z-axis, with E       along the x-direction (see 

Fig.2), i.e. 

-inc     A    -ikz     \ \..j£i 
i e 
x 1=0 

00 

rnc 
i 

H^ = 4 a'11" = YlUu 
i-0 

mc 
i 

gnc 

Ämc_ (-z)  ^ 
fci    ~   t[    lx 

j»inc _     (-z)  A 

(5.1) 

Figure 2 

We shall proceed to calculate the first two terms in the series ^or the scattered 

field, 
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E ^2-jmlE  , 
1=0 

H = ^UW'H   . 
1=0 

(5.2) 

by straightforward application of equations (4.46) - (4.55), 

5.1   Zeroth Order Terms 

From (5,1) we see that 

o x 
(5.3) 

The scattered electric field to this order is (4.47) 

E   = F +VÄ 
o       o       o 

(5.4) 

and(Eq. 4.49) 

A   ^ nxi 
F   = 

o --r~Vx 
R 

dB 

'B 

Equation (5.5), written in its entirety is. 

(5.5) 

*27r »TT 

fo(?) = -irVx\^B\d9Ba28in8B 
'0 '0 

A A 

B    x 

(5.6) 

Vr +a -2ar[cos0cos9+sin©sine 008(0-0^ 

where the unit normal is  r=1 sine_cos A,..+? sine„sin0_+i cose_ . 
Bx       BrBy        BrBz        B 

The integration is carried out using the well known expansion of l/R in 

spherical harmonics and we find (using a mixture of rectangular and spherical unit 

vectors) 
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3 

Fit) =a5-2:?-|V (5.7) 
r r 

Now we use (4.54) to fiod 0 .   The boundary conditioQ 

nxV0   = -nx(EmC+F )    , r-a (5.8) ro o       o 

is seen to imply that 

0, 3 
r=a 

llsm0cos0+c - (5.9) 

The exterior potential function taking on this boundary value is found to be (write 0 
oo v    a 

as a series expansion   /    —~r P (cos 7) whose unknown coefficients are deter- ^ Z-J,   n+i    n 
n=ü r 

mined using the boundary condition), 

0   = -| ^r 8in0co8 0+— (5.10) ro        3    2 r     r 
r 

Substituting (5.7) and (5.10) in (5.4) we find 

^       „axÄa^acn /cnx E   = 3—7-r--~ 1 - — r     . (5.11) o 4 3x2 
r r r 

The auxilliary ccmdition 

n-E    =0 (5.12) 
o 

'B 

implies, with (5.11), that 

c = 0 , (5.13) 

To find H   we see (Eqs. 4.48, 4.51) that 
o 
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H   = G -rVtf/   . 
o        o       o ^5.14) 

From (4.50) 

i        ^    a * H 

G   = T" ^   \   —S2- dB 
o      47r |        R 

(5.15) 

and 

iP0 = A 
o y 

(5.16) 

from which 

G   = 
o 3  A 3 / 

(5.17) 

ip   (Eq. 4.55) is an exterior potential function with boundary values 

dtp 
c 

ar 
-r 

r=a 

^rnc    A;*       A^ia/a     A 
H      -r-G   =r.i+-T"(--ryl 

o o y    3 9r \  3    / 
(5.18) 

1 
sinösin^. 

Such a function is easily seen to be 

^   = - 7 "T; sm0sm o 6     2 
r 

(5.19) 

which, with (5.14) and (5.17) leads to 

H 
r 

3A „ 
a i o    J V ,  3  a v A 

0 3 2     4  r 

2r r 
(5.20) 

The zeroth order results may be rewritten entirely in terms of spherical unit vec- 

tors as 
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4« 2 3 
r2a    , „      ^   ^a A a 

E   =—r-8in9cos0-0-TCO8Ocos0+0--gin0 (5.21) 
y       r r r 

^ 3 Ä    3 A    3 
H   = —8in08in0-0 —co808in0-0 —CO80 . (5.22) 

0      r 2r 2r 

5.2  First Order Terms 

The next terms are found using these results, again following the procedure 

of the preceding section.   It is to be noted that even at this stage, the calculations 

become tedious.   With (4.49) we see that 

Ainc P                              P   A   ;t ixE \            ,_              ,   \     nxH 

R 47r         \ 
'B JB 

Fi = -Z:Vx\    —^—dB-fvx\   ÄxEinCdB+-
L\   -r-^dB 1 4a \ R 47r \ o 47r   \       R 

~- V \ n-E   dB (5.23) 
47r        \ o 

-» -n -^inc 
All terms are well defined,  E    and H   in (5.21) and (5.22) above and E      and 
^inc oo o 
E      in (5.1), namely 

i*inc     A Äinc ^ 
E0     =lx      . E1      =-zix     . (5.24) 

Cariying out the indicated integrations we find 

5 3 5 
F,   = -—r-?-—rrxi +—T (zl +xi ) 5.25) l « 2       y_oxz 

r 2r 5r 

Now we use (4.54) to find 0 .   The boundary condition 

nxV0   = -nx(E1    +F.)    , r = a 

is seen to imply 
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'. 
r=a 

3a^ a^   1 
— cos0ain2Ö+c =-~ P2{co80)co8 0+c (5.26) 

Here we employ the definition of the associated Legeodre functions given by Magnus 

and Oberhettinger (1949).   The exterior potential function taking cm these boundary 

values is found to be 

a5     1 
0, = r P (cos0)cos0+—      . (5.2?) 

1 lOr     2 r 

I**' Forming E1 with (4.47), and applying the auxilliary condition     \ n- f1 dB = 0 

which implies c = 0, we find 

3 i     /5   \ r a    AAl/axz\ 

Proceeding to the determination of H   we see that (Eq. 4.48) 

Hj = ^-g^ + V^ . (5.29) 

With (4.50) 

JB J JB 

+ i;v\iB^TiB-     (5-30) 

B 

All the quantities involved have already been defined in (5.1) and (5,22).   Carrying 

out the integration yields 

* 3 /   5     \ £       a   A  A        /a       \ 
Gi = "irxix + v    sy2 • <5-31^ 

Sr^       x        \5rb    / 
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e i     _ 
To determine g   we must first find u   and u .   From (4.52) 

ui = "T"   »   —^ 1 4ir 
dB 

J. B 

(5.32) 

which, with (5,21), may be evaluated as 

u    = - — P (COSÖ)CO8 0 (5.33) 

Following (4.53) we determine the interior potential function whose normal deriva- 
6 

tive matches that of u    on the boundary.   Here we assume a series of the form 

a r P (COSY) and determine the a   using the boundary condition.   In the pre- 
n      n o 

sent case, this is easily seen to be 

u   = --rP (cos0)cos0 . 
X o 1 

(5.34) 

With (4.51) we see that 

gl  ^   47r 

A   n  / e      l \ nxV (u   -u ) 
dB (5.35) 

and using the expressions (5.33) and (5.34'   this may be found explicitly as 

gl ~ '3    2 rxix' 
'5,36) 

Now we proceed using (4.55) to find an exterior potential function,  (//., satisfying 

the boundary condition 

3n 
r=a 

A   *mc   A   ^   , ^   - ■n-^    -n-Gj+n-gj   . (5.37) 
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With (5.1), (5.31) and (5,36), this boundary condition becomes 

dr 
1 r=a 

and the solution is found to be 

2 2a    1 
= --asinöcosösin^ = — P (cos0)8in| 

o 1.0      Z 

5 
^ = - —^ P2(co80)sin0 

45r 15r 

= 
2a y2 

D 

Substituting (5.31), (5.35) and (5.39) in (5.29) we obtain 

H   =4rxt4v(^ x    3     V    5 

The first order terms may be written entirely in spherical coordinates as 

El = 
3 a5 A    /a

5 a3 

- —z sinöcosöcos 0 r + ( —7 cos 26 + —- j cos i 
r ^2r 2x 

a a 
-cos0sm0   -^+~^ 

Vs2r2     2r4 

-     5 A /5       3^    x 
H   = -■~sin0cos0sin0r + [-~cos20+ ~ j sin0^ 

^3r 

3 5 \^ + cos0cos0[ ~ + -^7 )0 
r       3r 

(5.38) 

(5.39) 

(5.40) 

(5.41) 

(5.42) 

These results for the first two terms in the low frequency expansion may be shown 

to be in complete agreement with comparable expressions derived from the standard 

Mie series. 
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